The RecF Protein Antagonizes RecX Function via Direct Interaction
نویسندگان
چکیده
منابع مشابه
The RecF protein antagonizes RecX function via direct interaction.
The RecX protein inhibits RecA filament extension, leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto single-stranded DNA binding protein (SSB)-coated circular single-stranded DNA (ssDNA) in the presence of RecX occurs only when all of the RecFOR ...
متن کاملSSB antagonizes RecX-RecA interaction.
The RecX protein of Escherichia coli inhibits the extension of RecA protein filaments on DNA, presumably by binding to and blocking the growing filament end. The direct binding of RecX protein to single-stranded DNA is weak, and previous reports suggested that direct binding to DNA did not explain the effects of RecX. We now demonstrate that elevated concentrations of SSB greatly moderate the e...
متن کاملBacillus subtilis RecA with DprA–SsbA antagonizes RecX function during natural transformation
Bacillus subtilis DprA and RecX proteins, which interact with RecA, are crucial for efficient chromosomal and plasmid transformation. We showed that RecA, in the rATP·Mg2+ bound form (RecA·ATP), could not compete with RecX, SsbA or SsbB for assembly onto single-stranded (ss)DNA, but RecA·dATP partially displaced these proteins from ssDNA. RecX promoted reversible depolymerization of preformed R...
متن کاملMechanical force antagonizes the inhibitory effects of RecX on RecA filament formation in Mycobacterium tuberculosis
Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and fo...
متن کاملExploring Function Prediction in Protein Interaction Networks via Clustering Methods
Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Cell
سال: 2006
ISSN: 1097-2765
DOI: 10.1016/j.molcel.2005.11.011